Top-down fabrication of silicon photonic structures for hosting single-photon emitters


Top-down fabrication of silicon photonic structures for hosting single-photon emitters

Jagtap, N.; Hollenbach, M.; Fowley, C.; Berencen, Y.; Lee, W.; Astakhov, G.; Erbe, A.; Helm, M.

Silicon, the ubiquitous material for computer chips, has recently been shown to be instrumental for hosting sources of single-photons emitting in the strategic optical telecommunication O-band (1260-1360 nm)[1], the so-called G center. To increase the brightness and the photon extraction efficiency of single G center, the coupling of these centers into photonic structures is strong. This work presents a top-down approach avoiding the use of ion beam-based etching methods for fabricating high-quality defect-free photonic structures such as silicon nanopillars, which can host singlephoton emitters. This method builds upon a wet-chemical process known as metal-assisted chemical etching. We report the successful fabrication of two-dimensional arrays of vertically-directed waveguiding silicon nanopillars. We also show the etch chemistry dependence on the Si wafer resistivity along with its effect on the etch rate and the sidewall roughness of pillars for a variety of pillar diameters.
References:[1] M. Hollenbach, et al. Opt. Express 28,26111-26121

Involved research facilities

Related publications

  • Open Access Logo Poster (Online presentation)
    virtual DPG-Frühjahrstagungen (DPG Spring Meetings) 2021, 27.-30.09.2021, Online, Germany

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34549