Top-down nanofabrication of silicon nanopillars hosting telecom photon emitters


Top-down nanofabrication of silicon nanopillars hosting telecom photon emitters

Jagtap, N. S.; Hollenbach, M.; Fowley, C.; Baratech, J.; Guardia-Arce, V.; Kentsch, U.; Eichler-Volf, A.; Abrosimov, N. V.; Erbe, A.; Shin, C.; Kim, H.; Helm, M.; Lee, W.; Astakhov, G. V.; Berencén, Y.

Silicon, a ubiquitous material in modern computing, is an emerging platform for realizing a source of indistinguishable single-photons on demand. The integration of recently discovered single-photon emitters in silicon into photonic structures is advantageous to exploit their full potential for integrated photonic quantum technologies. Here, we show the integration of an ensemble of telecom photon emitters in a two-dimensional array of silicon nanopillars. We developed a top-down nanofabrication method, enabling the production of thousands of individual nanopillars per square millimeter with state-of-the-art photonic-circuit pitch, all the while being free of fabrication-related radiation damage defects. We found a waveguiding effect of the 1278 nm G-center emission along individual pillars accompanied by improved brightness, compared to that of bulk silicon. These results open pathways to monolithically integrating single-photon emitters into a photonic platform.

Involved research facilities

Related publications

  • Poster
    DPG-Tagung 2022, 04.-09.09.2022, Regensburg, Germany

Permalink: https://www.hzdr.de/publications/Publ-34567