Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films


Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films

Makushko, P.; Kosub, T.; Pylypovskyi, O.; Hedrich, N.; Li, J.; Pashkin, O.; Avdoshenko, S.; Hübner, R.; Ganss, F.; Liedke, M. O.; Butterling, M.; Wagner, A.; Wagner, K.; Shields, B. J.; Lehmann, P.; Veremchuk, I.; Faßbender, J.; Maletinsky, P.; Makarov, D.

Antiferromagnetic insulators are a prospective material science platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored both fundamentally and technologically. Here, we discover a new member in the family of flexoeffects in thin films of technologically relevant antiferromagnetic Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the N ́eel temperature along the thickness of a 50-nm-thick film and induces a sizable flexomagnetic coefficient of about 15 μb/nm2 originating from the inhomogeneous reduction of the antiferromagnetic order parameter. The antiferromagnetic ordering in inhomogeneously strained thin films of Cr2O3 can persist up to 100◦ C, rendering Cr2O3 relevant for industrial electronics applications. The presence of a strain gradient in thin films of Cr2O3 may therefore allow for the realization of reconfigurable antiferromagnetic racetracks, magnonic waveguides and magnon crystals. The presence of a strain gradient in ultrathin films of Cr2O3 enables new fundamental research directions on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.

Keywords: antiferromagnetism; flexomagnetism; Cr2O3; Neel temperature; NV magnetometry; magnetotransport

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-34673