Nonstationary spin waves under a uniform excitation in a confined permalloy microstrip directly imaged with STXM-FMR


Nonstationary spin waves under a uniform excitation in a confined permalloy microstrip directly imaged with STXM-FMR

Pile, S.; Stienen, S.; Lenz, K.; Narkovic, R.; Wintz, S.; Förster, J.; Mayr, S.; Buchner, M.; Weigand, M.; Ney, V.; Lindner, J.; Ney, A.

Spin waves are one of the options to replace the transfer of electronic charges in logic devices to make information processing faster and more efficient [1]. A fundamental understanding of the dynamic magnetic properties of confined rectangular strips is a prerequisite for the development of nanoscale computational devices. Planar microresonators/microantennas made it possible not only to measure spin wave dynamics in a single microstrip, but to apply synchrotron-based time-resolved scanning transmission microscopy (TR-STXM) [3] using a phase-locked ferromagnetic resonance (FMR) excitation scheme (STXM-FMR). STXM-FMR enables direct temporally resolved imaging of the spatial distribution of the precessing magnetization within the microstrip during FMR excitation with elemental selectivity. FMR modes in a single rectangular permalloy microstrip were directly imaged using STXM-FMR and the findings were corroborated by micromagnetic simulations showing a very good agreement [5]. Under uniform excitation in a single confined microstrip typically standing spin waves are expected, nevertheless all imaged spin waves are nonstationary at and off resonance.

Keywords: ferromagnetic resonance; x-ray transmission microscopy; nanostructures

  • Invited lecture (Conferences)
    NESY User Symposium 2022, 29.-30.09.2022, Leoben, Österreich
  • Poster
    7. Conference on Magnonics 2022, 31.07.-04.08.2022, Oxnard, USA

Permalink: https://www.hzdr.de/publications/Publ-34844