Curvilinear Micromagnetism: from fundamentals to applications


Curvilinear Micromagnetism: from fundamentals to applications

Sheka, D.; Makarov, D.

This book presents a timely and fundamental overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curves wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of curved magnets including both fabrication and characterization. With its coverage of theoretical and fundamental aspects, together with exploration of numerous applications across magnonics, bio-engineering, soft robotics and shapeable magnetoelectronics, this edited collection is ideal for all scientists in academia and industry seeking an overview and wishing to keep abreast of advances in the novel field of curvilinear micromagnetism. It provides easy but comprehensive access to the field for newcomers, and can be used for graduate-level courses on this subject.

Keywords: curvature effects in magnetism; curvilinear magnetism; printed electronics; magnetic field sensors; flexible magnetoelectronics; soft magnetic robots

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-34892