Evolution of elctronic coupling in the mechanically controllable break junctions


Evolution of elctronic coupling in the mechanically controllable break junctions

Lokamani, M.; Kilibarda, F.; Günther, F.; Kelling, J.; Strobel, A.; Zahn, P.; Juckeland, G.; Gothelf, K.; Scheer, E.; Gemming, S.; Erbe, A.

The electrical properties of single molecules can be investigated using atomically sharp metallic electrodes in mechanically controllable break junctions (MCBJs). The current-voltage (IV) characteristics of single molecules in such junctions are influenced by the binding positions of the end groups on the tip-facets and tip-tip separation. In this talk, we present MCBJ experiments on N,N’-Bis(5-ethynylbenzenethiol-salicylidene)ethylenediamine (Salen). We discuss the evolution of the single level model (SLM) parameters namely, a) the energetic level є of the dominant conducting channel and b) the coupling Γ of the dominant conducting channel to the metallic electrodes. The SLM-parameters were evaluated for IV-curves recorded during opening measurements and fitted to the single level model. We propose a novel, high-throughput approach to model the evolution of the SLM-parameters and explain the recurring peak-like features in the experimentally measured evolution of Γ with increasing tip-tip separation, which we relate to the deformation of the molecule and the sliding of the anchor group above the electrode surface.

Keywords: MCBJ; Single Level Model; high-throughput approach; evolution of the SLM-parameters

  • Open Access Logo Lecture (Conference)
    DPG Regensburg 2022, 04.-09.09.2022, Regensburg, Germany

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34916