Stability and structure of platinum sulfide complexes in hydrothermal fluids


Stability and structure of platinum sulfide complexes in hydrothermal fluids

Laskar, C.; Bazarkina, E.; Kokh, M.; Hazemann, J.-L.; Vuilleumier, R.; Desmale, E.; Pokrovski, G. S.

Knowledge of the chemical speciation of platinum and the solubility of Pt-bearing minerals in hydrothermal fluids is required to assess Pt transport, remobilization and concentration in the Earth’s crust. In this study, we combined PtS(s) solubility measurements in a hydrothermal reactor allowing fluid sampling, in situ X-ray absorption spectroscopy, and first-principles molecular dynamics simulations to systematically investigate the structure, composition and stability of Pt sulfide complexes in model aqueous H2S-bearing solutions up to 300 °C and 600 bar. The results demonstrate that tetrahydrosulfide, PtII(HS)42–, is the major Pt-bearing complex in aqueous solutions saturated with PtS(s) over a wide range of dissolved hydrogen sulfide concentrations, from < 0.2 to ∼ 2 molal. The equilibrium constants of the dissolution reaction of PtS(s) generated in this study, PtS(s) + 3 H2S(aq) = Pt(HS)42– + 2 H+ (β4), are described by the equation log10β4 = 0.9 × 1000/T(K) – 19.7 (± 0.5) over the temperature range 25–300 °C and pressure range Psat–600 bar. Furthermore, the stepwise formation constants of four PtII-HS complexes, Pt(HS)+, Pt(HS)20, Pt(HS)3–, and Pt(HS)42–, were estimated, for the first time, from molecular dynamics simulations. The generated constants indicate that the maximum solubility of platinum in the form of Pt(HS)42– in reduced H2S-dominated hydrothermal fluids at moderate temperatures (≤ 350 °C) is close to 1 ppb Pt at near-neutral pH of 6–8 and hydrogen sulfide concentrations of 0.1 molal. Although this solubility is much greater than that of Pt-Cl, Pt-OH and Pt-SO4 complexes at such conditions, it is yet too low to account for significant Pt transport in most shallow-crust hydrothermal settings, characterized by the presence of both sulfide and sulfate. Complexes with S-bearing ligands, very likely other than H2S/HS–, such as S3–, would be required to account for Pt hydrothermal mobility. Our results provide a basis for more systematic future studies, using combined approaches, of the role of hydrothermal fluids in the behavior of platinum group elements in nature.

Keywords: Platinum sulfide complexes; Hydrothermal fluid; Solubility; X-ray absorption spectroscopy; Molecular dynamics; Stability constant

Downloads

Permalink: https://www.hzdr.de/publications/Publ-35527