Investigation of beam quality enhancement with tailored down-ramp profiles in laser wakefield accelerators using particle-in-cell simulations


Investigation of beam quality enhancement with tailored down-ramp profiles in laser wakefield accelerators using particle-in-cell simulations

Günzl, J.; Pausch, R.; Bastrakov, S.; Bussmann, M.; Chang, Y.-Y.; Couperus, J.; Irman, A.; Schöbel, S.; Steiniger, K.; Widera, R.; Schramm, U.; Debus, A.

Electrons from laser wakefield accelerators (LWFA) can be ultrashort and quasi-monoenergetic. They have the potential to be an ideal source for advanced light sources or beam drivers for hybrid laser-plasma wakefield accelerators (LPWFA). A wide variety of injection methods have already been developed to produce high-quality LWFA electrons. However, such high-quality electron bunches may degrade upon exiting the LWFA stage.

This poster addresses quality-preserving methods for extracting electron beams from laser wakefield accelerators by adjusting the plasma density of the down ramp. By modeling different gas profiles with the fully relativistic particle-in-cell code PIConGPU, not only the final beam quality but also all relevant physical effects can be studied in detail. This allows not only to find an optimal quality-preserving down ramp but also to study the influence of changes in laser focus position on beam properties during extraction.

Keywords: LWFA; PIConGPU; divergence

Involved research facilities

  • Draco
  • Lecture (Conference) (Online presentation)
    DPG-Frühjahrstagung, 28.03.-01.04.2022, Mainz / virtuell, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-36104