In-situ compositional and structural characterization of dc-Magnetron Sputtered CuCr₂O₄ films for high-temperature solar absorbers


In-situ compositional and structural characterization of dc-Magnetron Sputtered CuCr₂O₄ films for high-temperature solar absorbers

Garcia Valenzuela, A.; Munnik, F.; Habenicht, C.; Naumann, T.; Hübner, R.; Krause, M.

A series of CuCr₂O₄ thin films has been successfully synthesized via a facile and cost-effective reactive Direct Current Magnetron Sputtering technique at room temperature. These coatings were deposited to evaluate their suitability as absorber material for the next generation of concentrated solar power plants [1]. The composition of the films was controlled using as key parameters the power ratio between Cu and Cr targets as well as the oxygen flux. The films deposited without intentional substrate heating were initially amorphous and needed to be annealed at 800 °C for one hour to obtain a spinel-like crystal structure [2]. RBS was used to characterize the composition of the as-deposited and annealed coatings. The structural properties were investigated by Raman spectroscopy and XRD. Structural characterization allows us to evidence that slight deviation in stoichiometry promotes the formation of secondary phases in the films. In this concern, we use in-situ Raman spectroscopy and spectroscopic ellipsometry to characterize the structural evolution of the films as a function of temperature in a controlled oxygen atmosphere. The study evidences the evolution from amorphous to fully crystallized material. Additionally, the influence of the film roughness in the optical performance of the coatings with appropriate composition was explored to enhance the optical properties of the film.

References:

1) Ramón Escobar Galindo, Matthias Krause, K. Niranjan and Harish Barshilia, in Sustainable Material Solutions for Solar Energy Technologies (ed. Mariana Fraga, Delaina Amos, Savas Sonmezoglu, Velumani Subramaniam, Elsevier, 2021).
2) Matthias Krause, Johanna Sonnenberg, Frans Munnik, Jörg Grenzer, René Hübner, Aurelio Garcia-Valenzuela, Sibylle Gemming in Materialia 18 (2021) 101156.

Keywords: Magnetron Sputtering; Solar Absorber; CuCr2O4; Raman spectroscopy; RBS

Involved research facilities

Related publications

  • Lecture (Conference)
    18th International Conference on Plasma Surface Engineering, 12.-15.09.2022, Erfurt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-36129