Dissolution of dopant-vacancy clusters in semiconductors


Dissolution of dopant-vacancy clusters in semiconductors

Prucnal, S.

The n-type doping of Ge is a self-limiting process due to the formation of vacancy-donor complexes (DnV with n ≤ 4) that deactivates the donors. Based on data density functional theory calculations, at temperature higher than 850 K, the concentration of D4V clusters progressively decreases liberating unbounded vacancies and donor atoms. Similar problems apply to wide-band gap semiconductors where the p-type doping is challenging, mainly due to the high activation energy for acceptors, low equilibrium solid solubility and deactivation of acceptors by the formation of acceptor-vacancy clusters. Here, we report on experiments and theoretical calculations solving the basic problem of donors and acceptors deactivation in heavily doped semiconductors. The dissolution of donor/acceptor-vacancy clusters in heavily doped semiconductors is achieved by ms-range FLA with a peak temperature close to the melting point of the semiconductor. Positron annihilation lifetime spectroscopy (PALS) reveals that dopant-vacancy clusters are the main defect centers deactivating both acceptors and donors. Millisecond-range high-temperature treatment dissociates the dopant-V clusters and, as shown by SIMS, fully suppresses the dopant diffusion in both group IV semiconductors and III-V compound semiconductors. For the first time, using structural characterization (PALS, SIMS) and electrochemical capacitance-voltage profiling combined with DFT calculations, we were able to address, understand, and solve the fundamental problem hindering the doping of semiconductors above the solid solubility limit.

Keywords: Germanium; Flash Lamp Annealing; ion implantation; positron annihilation

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    European Materials Research Society (E-MRS), 30.05.-03.06.2022, VIRTUAL Conference, France

Permalink: https://www.hzdr.de/publications/Publ-36132