Thermal Performance Study of a Heat-Pipe in Comparison with Experiments Using CFD


Thermal Performance Study of a Heat-Pipe in Comparison with Experiments Using CFD

Höhne, T.

Heat pipes are playing a more important role in many industrial applications, particularly in improving the thermal performance of heat exchangers and increasing energy savings in applications with commercial use. In this paper, a Computational Fluid Dynamics (CFD) model was built to simulate the details of the steam/water two-phase flow and heat transfer phenomena during the operation of a heat pipe. The homogeneous model in ANSYS CFX was used for the simulation. The evaporation, condensation and phase change processes were modelled. The 3D simulations could reproduce the heat and mass transfer processes in comparison with experiments from the literature. Reasonable good agreement was not only observed between CFD temperature profiles in relation with experimental data but also in comparing the thermal performance of the heat-pipe. It was found that the heating power should not increase above 1000 W for the analyzed type of TPCT using copper material.

Keywords: Two-phase flow; Boiling; CFD; Condensation; Heat-pipe

Permalink: https://www.hzdr.de/publications/Publ-36353