Electron-Beam- and Thermal-Annealing-Induced Structural Transformations in Few-Layer MnPS₃


Electron-Beam- and Thermal-Annealing-Induced Structural Transformations in Few-Layer MnPS₃

Storm, A.; Köster, J.; Ghorbani Asl, M.; Kretschmer, S.; Gorelik, T. E.; Kinyanjui, M. K.; Krasheninnikov, A.; Kaiser, U.

Quasi-two-dimensional (2D) manganese phosphorus trisulfide, MnPS₃, which exhibits antiferromagnetic ordering, is a particularly interesting material in the context of magnetism in a system with reduced dimensionality and its potential technological applications. Here, we present an experimental and theoretical study on modifying the properties of freestanding MnPS₃ by local structural transformations via electron irradiation in a transmission electron microscope and thermal annealing in vacuum. In both cases we find that phases with the net formula MnS₁₋ₓPₓ in the α- or γ-MnS crystal structure can be formed. The phase transformations can be locally and precisely controlled by the total applied electron dose and explored at the atomic scale. For the MnS structures generated in this process, our ab-initio calculations indicate that their electronic and magnetic properties strongly depend on both in-plane crystallite orientation and thickness. Moreover, the electronic properties of the MnS phases can be further tuned by alloying with phosphorus, suggesting a novel route toward the design of lateral heterostructures. Therefore, our results may enable pathways for the controlled growth of new phases with distinct properties embedded in freestanding quasi-2D MnPS₃.

Keywords: Structural transformations; MnPS3; α-MnS; γ-MnS; 3D electron diffraction; thermal annealing; modification

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-36519