QED.jl - First-Principal Description of QED-Processes in x-ray laser fields


QED.jl - First-Principal Description of QED-Processes in x-ray laser fields

Hernandez Acosta, U.; Steiniger, K.; Jungnickel, T.; Bussmann, M.

We present a novel approach for an event generator inherently using exact QED descriptions to predict the results of high-energy electron-photon scattering experiments that can be performed at modern X-ray free-electron laser facilities. Future experiments taking place at HIBEF, LCLS, and other facilities targeting this regime, will encounter processes in x-ray scattering from (laser-driven) relativistic plasmas, where the effects of the energy spectrum of the laser field as well as multi-photon interactions can not be neglected anymore. In contrast to the application window of existing QED-PIC codes, our event generator makes use of the fact, that the classical nonlinearity parameter barely approaches unity in high-frequency regimes, which allows taking the finite bandwidth of the x-ray laser into account in the description of the QED-like multi-photon interaction. Consequently, we exploit these effects in Compton scattering, Breit-Wheeler pair-production and trident pair-production in x-ray laser fields as one of the driving forces of electromagnetic cascades and plasma formation.

Keywords: Strong-field QED; Simulation; Monte-Carlo methods

  • Lecture (Conference)
    43rd International Workshop on High-Energy-Density Physics with Intense Ion and Laser Beams, 30.01.-03.02.2023, Hirschegg, Austria

Permalink: https://www.hzdr.de/publications/Publ-36611