Concepts in Strong-field QED


Concepts in Strong-field QED

Hernandez Acosta, U.

Usually, quantum electrodynamics is the prime example, when it comes to a well-understood and outstandingly precise description of elementary particle processes. However, modern laser facilities provide highly intense light with a non-trivial temporal structure, where an arbitrary number of ‘photons’ from the light source may interact with the colliding particles. In this case, the standard perturbative treatment, e.g. known from quantum electrodynamics, becomes very cumbersome and impractical. Accordingly, there are, among others, wide theoretical investigations w.r.t. scattering processes of particles impinging these extreme light sources. This has been done by applying strong-field quantum electrodynamics, which is a theory of electromagnetic interactions within coherent highly intense light treated as a classical background field. Here, the distinction between a classical background field and a quantised photon field revealed a vast amount of novel non-linear structures and non-perturbative phenomena. In this seminar, we introduce the basic concepts of strong-field QED and derive the Feynman rules for the theory. Then we apply those rules to the Breit-Wheeler process, i.e. the electron-positron pair production in the collision of a laser field and a highly energetic photon

  • Invited lecture (Conferences)
    IKTP - Institutsseminar, 12.01.2023, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-36613