Comparison of 3D and 4D robustly optimized proton treatment plans for non-small cell lung cancer patients with tumour motion amplitudes larger than 5 mm


Comparison of 3D and 4D robustly optimized proton treatment plans for non-small cell lung cancer patients with tumour motion amplitudes larger than 5 mm

Spautz, S.; Haase, L.; Tschiche, M.; Makocki, S.; Richter, C.; Troost, E. G. C.; Stützer, K.

Background and purpose: There is no consensus about an ideal robust optimization (RO) strategy for proton therapy of targets with large intra-fractional motion. We investigated the plan robustness of different RO strategies regarding setup/range errors, interplay effects and interfractional anatomical changes.
Materials and methods: For eight non-small cell lung cancer patients with primary and/or nodal clinical target volume (CTVp/CTVn) with motion >5mm, different RO approaches were investigated: 3DRO considering the average CT (AvgCT) with a target density override, 4DRO considering three/all 4DCT phases, and 4DRO considering the AvgCT and three/all 4DCT phases. Realistic interplay scenarios were reconstructed based on patient breathing and machine logfile data for deliveries with/without layered rescanning. Robustness against setup/range errors, interplay effects and interfractional anatomical changes were analyzed for target coverage and OAR sparing.
Results: All nominal plans fulfilled the clinical requirements, while 4DRO without AvgCT generated the most conformal dose distributions. Robustness against setup/range errors was best for 4DRO with AvgCT. No RO strategy was sufficient in countervailing fraction-wise dose distortions caused by interplay effects. Irrespective of rescanning, target coverage was restored in all cases when accumulating four interplay scenarios. 4DRO with AvgCT showed higher CTVp robustness against interfractional changes, but plan adaptations are necessary for all RO strategies in case of relevant anatomical changes.
Conclusion: All RO strategies are clinically acceptable but exhibit equally low robustness against interplay effects. To ensure fraction-wise target coverage, additional motion mitigation is required for CTVs with large motion amplitudes and interfractional changes need to be monitored.

Keywords: Proton therapy; Treatment plannung; Non-small cell lung cancer; Robustness; Interplay effect

Permalink: https://www.hzdr.de/publications/Publ-36627