Experimental and theoretical study on the production of carbide-rich composite nano-coatings


Experimental and theoretical study on the production of carbide-rich composite nano-coatings

Fogarassy, Z.; Kentsch, U.; Panjan, P.; Racz, A. S.

Carbides are known for high hardness and corrosion resistance and therefore applicable as protective coatings. C/Si and C/W multilayers (the individual layer thicknesses were between 10 and 20 nm) have been irradiated at room temperature by argon and xenon ions. The energies varied between 40 and 120 keV while the fluences were in the range of 0.07 - 6 × 10¹⁶ ions/cm². The SRIM simulation was applied to have the proper ion energy. The irradiation induced intermixing and carbide (SiC and WC) formation at the interfaces already for the lowest irradiation fluence. The component in-depth distribution has been determined by AES depth profiling which showed that it varied greatly as a function of the irradiation conditions and layer structure. In both material pair the thickness of the produced carbide increased with square root of fluence but the mixing mechanism were different: local spike for C/W and ballistic for C/Si. The mixing efficiency was lower for the C/Si than for the C/ W.

Keywords: WC; SiC; Carbide; Irradiation; Multilayer; Mixing

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-36666