Dimer Coupling Energies of the Si(001) Surface


Dimer Coupling Energies of the Si(001) Surface

Schützhold, R.; Brand, C.; Hucht, A.; Jnawali, G.; Fortmann, J. D.; Sothmann, B.; Mehdipour, H.; Kratzer, P.; Horn-Von Hoegen, M.

The coupling energies between the buckled dimers of the Si(001) surface were determined through analysis of the anisotropic critical behavior of its order-disorder phase transition. Spot profiles in high-resolution low-energy electron diffraction as a function of temperature were analyzed within the framework of the anisotropic two-dimensional Ising model. The validity of this approach is justified by the large ratio of correlation lengths, ζ +/ζ∥+=5.2 of the fluctuating c(4×2) Domains above the critical temperature Tc=(190.6±10) K. We obtain effective couplings J∥=(-24.9±1.3) meV along the dimer rows and J⊥=(-0.8±0.1) meV across the dimer rows, i.e., antiferromagneticlike coupling of the dimers with c(4×2) symmetry.

Keywords: Dimers; Electrons; Ising model; Correlation lengths; Coupling energies; Critical behaviour; Critical temperatures; Effective coupling; High resolution; Low-energy electron diffraction; Order/disorder phase transition; Spot profile; Two-dimensional; Anisotropy

Permalink: https://www.hzdr.de/publications/Publ-37064