Physics-enhanced neural networks for equation-of-state calculations


Physics-enhanced neural networks for equation-of-state calculations

Callow, T. J.; Kraisler, E.; Cangi, A.

Rapid access to accurate equation-of-state (EOS) data is crucial in the warm-dense matter regime, as it is employed in various applications, such as providing input for hydrodynamics codes to model inertial confinement fusion processes. In this study, we develop neural network models for predicting the EOS based on first-principles data. The first model utilizes basic physical properties, while the second model incorporates more sophisticated physical information, using output from average-atom calculations as features. Average-atom models are often noted for providing a reasonable balance of accuracy and speed; however, our comparison of average-atom models and higher-fidelity calculations shows that more accurate models are required in the warm-dense matter regime. Both the neural network models we propose, particularly the physics-enhanced one, demonstrate significant potential as accurate and efficient methods for computing EOS data in warm-dense matter.

Keywords: Machine learning; Equation of state; High-energy density science; Neural network; Warm dense matter; First-principles calculations; Density functional theory; Average-atom models

Permalink: https://www.hzdr.de/publications/Publ-37075