Nonlinear Transmission of FUS Protein Solution at 0.5 THz


Nonlinear Transmission of FUS Protein Solution at 0.5 THz

Thai, Q.-M.; Ilyakov, I.; Raj, M.; Dornbusch, D.; Arshad, A.; de Oliveira, T.; Jahnel, M.; Deinert, J.-C.; Ponomarev, A.; Kovalev, S.; Adams, E.

Water possesses strong absorption in the THz range due to intermolecular vibrational modes in a network of hydrogen-bonded water molecules. Its THz response is also sensitive to the coupling of water to other molecules, i.e. the hydration shell of a protein. Probing the nonlinear properties of hydration water can provide insight into protein solvent dynamics, and in the case of intrinsically disordered proteins, its subsequent role in the liquid-liquid phase separation (LLPS). Such characterization at low THz frequencies (< 3 THz) remains yet limited, due to the scarcity of brilliant light sources in this range. Here, we present the nonlinear characterization at 0.5 THz of water and FUS protein solution in a liquid transmission cell, using a THz time-domain spectroscopy (THz-TDS) setup with the TELBE free electron laser source at HZDR. Our results show that the nonlinear absorption and refractive indices of the FUS protein solution differ from that of water, indicating a perturbed hydrogen bonding network.

Involved research facilities

Related publications

  • Poster
    DPG Spring Meeting Condensed Matter Section, 26.-30.03.2023, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-37079