Probing Protein Hydration with Terahertz Spectroscopy


Probing Protein Hydration with Terahertz Spectroscopy

Adams, E.

In recent years the importance of the aqueous solvent in influencing protein structure, function, and dynamics has been recognized. Coupling of water molecules to the protein surface results in an interfacial region in which water molecules within this region have distinctly different properties than bulk water. However, the structure and dynamics within this interfacial region are still not easy to access experimentally. Terahertz (THz) spectroscopy has been shown to be a powerful tool to investigate solvent dynamics in bulk solutions. Radiation in the THz regime is directly sensitive to the low frequency collective intermolecular hydrogen-bonding vibrations of water (0.3-6 THz or 10-200 cm-1), and thus to any changes in the hydrogen-bonding network. Changes in these sub-picosecond collective motions, such as protein-water interactions, result in changes in the measured THz absorption. Individual hydrations shells of proteins have been shown to contribute largely to structure-function relationships and ultimately modulate the binding properties of proteins. Here the role of solvation dynamics in processes such as electron transport in protein complexes and enzymatic catalysis will be investigated.

  • Invited lecture (Conferences)
    9th Summer School Solvation Science, 30.05.-02.06.2023, Bochum, Germany

Permalink: https://www.hzdr.de/publications/Publ-37080