Optimizing Magneto-ionic Performance in Structure/Composition-Engineered Ternary Nitrides


Optimizing Magneto-ionic Performance in Structure/Composition-Engineered Ternary Nitrides

Ma, Z.; Peda, M.; Tan, Z.; Pellicer, E.; Liedke, M. O.; Butterling, M.; Elsherif, A. G. A.; Hirschmann, E.; Wagner, A.; Ibrahim, F.; Chshiev, M.; Menéndez, E.; Sort, J.

Magneto-ionics, an emerging approach to manipulate magnetism that relies on voltage-driven ion motion, holds the promise to boost energy efficiency in information technologies such as spintronic devices or future non-von Neumann computing architectures. For this purpose, stability, reversibility, endurance, and ion motion rates need to be synergistically optimized. Among various ions, nitrogen has demonstrated superior magneto-ionic performance compared to classical species such as oxygen or lithium. Here, we show that ternary Co1−xFexN compound exhibits an unprecedented nitrogen magneto-ionic response. Partial substitution of Co by Fe in binary CoN is shown to be favorable in terms of generated magnetization, cyclability and ion motion rates. Specifically, the Co0.35Fe0.65N films exhibit an induced saturation magnetization of 1500 emu cm–3, a magneto-ionic rate of 35.5 emu cm–3 s–1 and
endurance exceeding 103 cycles. These values significantly surpass those of other existing nitride and oxide systems. This improvement can be attributed to the larger saturation magnetization of Co0.35Fe0.65 compared to individual Co and Fe, the nature and size of structural defects in as-grown films of different composition, and the dissimilar formation energies of Fe and Co with N in the various developed crystallographic structures.

Keywords: magneto-ionics; voltage control of magnetism; electrolyte gating; ternary nitrides; ion transport; positron annihilation spectroscopy

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-37081