Active Sites of Te-hyperdoped Silicon by Hard X-ray Photoelectron Spectroscopy


Active Sites of Te-hyperdoped Silicon by Hard X-ray Photoelectron Spectroscopy

Hoesch, M.; Fedchenko, O.; Wang, M.; Schlueter, C.; Potorochin, D.; Medjanik, K.; Babenkov, S.; Ciobanu, A. S.; Winkelmann, A.; Elmers, H.-J.; Zhou, S.; Helm, M.; Schönhense, G.

Multiple dopant configurations of Te impurities in close vicinity in silicon are investigated using photoelec- tron spectroscopy, photoelectron diffraction, and Bloch wave calculations. The samples are prepared by ion implantation followed by pulsed laser annealing. The dopant concentration is variable and high above the solubility limit of Te in silicon. The configurations in question are distinguished from isolated Te impurities by a strong chemical core level shift. While Te clusters are found to form only in very small concentrations, multi-Te configurations of type dimer or up to four Te ions surrounding a vacancy are clearly identified. For these configurations a substitutional site location of Te is found to match the data best in all cases. For isolated Te ions this matches the expectations. For multi-Te configurations the results contribute to understanding the exceptional activation of free charge carriers in hyperdoping of chalcogens in silicon.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-37121