Equilibrium Taylor bubble in a narrow vertical tube with constriction


Equilibrium Taylor bubble in a narrow vertical tube with constriction

Maestri, R.; Radhakrishnakumar, S.; Bürkle, F.; Ding, W.; Büttner, L.; Czarske, J.; Hampel, U.; Lecrivain, G.

Air Taylor bubbles in a millichannel filled with water are characterized by an elongated shape, a bullet-shaped nose and a comparatively flat tail. Many experimental and numerical investigations have been performed in the past. Yet, most of them consider Taylor bubbles in a straight channel with constant cross-section. The effect of a local change in the channel geometry on both the bubble shape and the flow fields on each side of the gas-liquid interface is, however, difficult to predict. In this work, we present experimental data obtained in a vertical millichannel, where the flow is moderately obstructed by a constriction, whose ratio ranges from 10 to 36 %. \rhandrey{We find that the Taylor bubble takes an equilibrium position for downward liquid flow with 264.36 < Re < 529.67 and 264.36 < Re < 728.29 for 10.17 % and 18.06 % constriction ratios, respectively}. In this area, an empirical correlation characterizing the bubble head is provided. Other flow regimes, such as bubble breakup, co- and counter-current configurations are identified and shown in the form of a regime map. The results, besides their relevance in process engineering, exhibit high reproducibility and will serve as reference for future interface resolving two-phase flow simulations.

Keywords: Bubble dynamics; Interfacial flows; Deformation; Multiphase flows; Taylor bubbles

Related publications

Permalink: https://www.hzdr.de/publications/Publ-37123