Nonlinear large-scale flow transition in a precessing cylinder and its potential for hydromagnetic dynamo action


Nonlinear large-scale flow transition in a precessing cylinder and its potential for hydromagnetic dynamo action

Gundrum, T.; Kumar, V.; Pizzi, F.; Giesecke, A.; Stefani, F.; Eckert, S.

n this paper, we present an experimental investigation that centers on exploring the fluid dynamics within a
precessing cylinder. Our research is part of the DRESDYN project at Helmholtz-Zentrum Dresden-Rossendorf,
specifically focusing on the precession dynamo experiment. The primary objective of our study is to examine how
different rotation configurations influence the dominant flow modes inside the precessing cylinder, specifically
considering the prograde and retrograde rotations. Our main focus lies on two significant flow modes: the directly
forced mode (m1, k1) and the non-geostrophic axisymmetric mode (m0, k2). These modes hold substantial potential
for precession-driven dynamo action. By analyzing the outcomes between the prograde and retrograde
configurations, we gain valuable insights into the prevailing flow patterns within the precessing cylinder.

Keywords: Precession; DRESDYN; modes; dynamo

Involved research facilities

  • DRESDYN
  • Contribution to proceedings
    14th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering (ISUD 2023), 23.-25.10.2023, Kobe, Japan
    Proceedings of the 14th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering (ISUD 2023)

Permalink: https://www.hzdr.de/publications/Publ-37129