Ultrafast Relaxation Dynamics of Spin-Density Wave Order in BaFe2As2 under High Pressures


Ultrafast Relaxation Dynamics of Spin-Density Wave Order in BaFe2As2 under High Pressures

Fotev, I.; Winnerl, S.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Schneider, H.; Helm, M.; Pashkin, O.

BaFe2As2 is the parent compound for a family of iron-based high-temperature superconductors as well as a prototypical example of the spin-density wave (SDW) system. In this study, we perform an optical pump-probe study of this compound to systematically investigate the SDW order across the pressure-temperature phase diagram. The suppression of the SDW order by pressure manifests itself by the increase of relaxation time together with the decrease of the pump-probe signal and the pump energy necessary for complete vaporization of the SDW condensate. We have found that the pressure-driven suppression of the SDW order at low temperature occurs gradually in contrast to the thermally-induced SDW transition. Our results suggest that the pressure-driven quantum phase transition in BaFe2As2 (and probably other iron pnictides) is continuous and it is caused by the gradual worsening of the Fermi-surface nesting conditions.

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-37134