New high-resolution microscopy approaches for understanding biocompatibility of hip implants


New high-resolution microscopy approaches for understanding biocompatibility of hip implants

Podlipec, R.; Štrancar, J.; Barlič, A.; Dolinar, D.; Jenko, M.

Ensuring the biocompatibility of hip implants is essential for the safety, effectiveness, and longevity of these medical devices [1]. The material-induced tissue inflammation and immune reaction must be negligible while promoting tissue integration. However, the major unresolved issue in joint replacement is the occurrence of adverse biological reactions to wear debris, leading to severe inflammation [2] which has been observed at the subcellular level [3]. To gain a deeper understanding of the biocompatibility related to material chemistry and surface topography and to better predict the material functionality and clinical use, it is crucial to investigate the properties of cell adhesion, proliferation, and migration on the implant's surface. In this study, we demonstrate how Al2O3-coated titanium alloys with varying surface topographies and roughness affect the growth and morphology of human bone marrow mesenchymal stromal cells (BM-MSCs). This subcellular-level investigation was conducted on live cells using novel high-resolution 3D confocal fluorescence and backscatter microscopy.

1. Hu CY, Yoon TR. Biomaterials Research, 2018, 22, 33.
2. Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L. Nat Rev Rheumatol. 2011, 7, 600–608.
3. Podlipec R, Punzón-Quijorna E, Pirker L, Kelemen M, Vavpetič P, Kavalar R, Hlawacek G, Štrancar J, Pelicon P, Fokter SK, Materials, 2021, 14, 3048.

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    5th International Symposium on Biomaterials (5ISB), 13.10.2023, Portorož, Slovenia

Permalink: https://www.hzdr.de/publications/Publ-37723