Grenzflächenkonvektion an Tropfen und Blasen


Grenzflächenkonvektion an Tropfen und Blasen

Schwarzenberger, K.; Eftekhari, M.; Mokbel, M.; Weber, N.; Aland, S.; Eckert, K.

Die Grenzflächenkonvektion (Marangoni-Effekt) ist eine kleinskalige Strömung, die
durch Gradienten der Grenzflächenspannung verursacht wird. Sie beeinflusst den
Stofftransport und die Strömungsbedingungen in einer Vielzahl von natürlichen und
technologischen Prozessen. Grenzflächenkonvektion kann an Tropfen oder Blasen
beobachtet werden, die in einem vertikalen Konzentrationsgradienten einer gelösten
grenzflächenaktiven Substanz platziert werden [1,2]. Die Frequenz der
Strömungswirbel wird direkt vom anliegenden Konzentrationsgradienten des
gelösten Stoffs bestimmt. Mehrere benachbarte Tropfen oder Blasen (Abb. 1, links)
synchronisieren sich durch konvektive Interaktion zu Oszillationen über das gesamte
Ensemble. Die genannten Erkenntnisse werden durch numerische Simulationen
bestätigt.
Abbildung 1: Wechselwirkung von Grenzflächenkonvektion an benachbarten Tropfen (links [2]),
Geschwindigkeitsfeld um zwei schwimmende Decanoltropfen (mittig [4]), asymmetrische
Bulkströmung um partikelbeladene Blasenoberfläche (rechts)
Grenzflächenkonvektion beeinflusst zudem die Dynamik von schwimmenden
Dichlormethan- und Decanoltropfen [3,4]. Durch zeitlich und örtlich hochaufgelöste
Particle Image Velocimetry (PIV)-Messungen kann der Einfluss der
Grenzflächenkonvektion auf die Deformation und Interaktion der schwimmenden
Tropfen verstanden werden (Abb. 1, mittig).
1 mm
Mit dieser Technik konnte auch zum ersten Mal eine kontinuierliche
Grenzflächenkonvektion auf der Blasenoberfläche aufgrund einer asymmetrischen
Scherkraft durch die anliegende Bulkströmung visualisiert werden [5]. In diesem
Prozess bleibt die Grenzfläche unabhängig von der Konzentration eines klassischen
Tensids mobil. Bei Adsorption von Partikeln auf der Blasenoberfläche nimmt die
Mobilität der Grenzfläche jedoch ab (Abb. 1, rechts). Durch eine Kompression der
Oberfläche bildet sich weiterhin ein zusammenhängendes Netzwerk aus Partikeln,
das die Grenzflächenkonvektion schließlich zum Erliegen bringt [6].
Dies zeigt, dass in Abhängigkeit von der Art des adsorbierten Stoffs deutlich
unterschiedliche Randbedingungen für die Strömung an der Grenzfläche von Tropfen
und Blasen vorherrschen können [7]. Die kleine Längenskala der
Grenzflächenkonvektion eröffnet zudem die Möglichkeit, diesen Effekt zur passiven
Durchmischung [8] oder zur Informationsübertragung in mikrofluidischen Prozessen
zu nutzen [2].
Publikationen:
[1] Schwarzenberger, K., Aland, S., Domnick, H., Odenbach, S., & Eckert, K. (2015). Relaxation
oscillations of solutal Marangoni convection at curved interfaces. Colloids and Surfaces A, 481, 633.
[2] Mokbel, M., Schwarzenberger, K., Aland, S., & Eckert, K. (2018). Information transmission by
Marangoni-driven relaxation oscillations at droplets. Soft Matter, 14(45), 9250.
[3] Antoine, C., Irvoas, J., Schwarzenberger, K., Eckert, K., Wodlei, F., & Pimienta, V. (2016). Selfpinning
on a liquid surface. The Journal of Physical Chemistry Letters, 7(3), 520.
[4] Čejková, J., Schwarzenberger, K., Eckert, K., & Tanaka, S. (2019). Dancing performance of
organic droplets in aqueous surfactant solutions. Colloids and Surfaces A, 566, 141.
[5] Eftekhari, M., Schwarzenberger, K., Heitkam, S., & Eckert, K. (2021). Interfacial flow of a
surfactant-laden interface under asymmetric shear flow. Journal of Colloid and Interface Science, 599,
837.
[6] Eftekhari, M., Schwarzenberger, K., Heitkam, S., Javadi, A., Bashkatov, A., Ata, S., & Eckert, K.
(2021). Interfacial Behavior of Particle-Laden Bubbles under Asymmetric Shear Flow. Langmuir,
37(45), 13244.
[7] Keshavarzi, B., Krause, T., Sikandar, S., Schwarzenberger, K., Eckert, K., Ansorge-Schumacher,
M. B., & Heitkam, S. (2022). Protein enrichment by foam Fractionation: Experiment and modeling.
Chemical Engineering Science, 256, 117715.
[8] Bratsun, D., Kostarev, K., Mizev, A., Aland, S., Mokbel, M., Schwarzenberger, K., & Eckert, K.
(2018). Adaptive micromixer based on the solutocapillary Marangoni effect in a continuous-flow
microreactor. Micromachines, 9(11), 600.

  • Lecture (Conference)
    Jahrestreffen der DECHEMA-Fachgruppen Kristallisation, Grenzflächenbestimmte Systeme und Prozesse sowie Mechanische Flüssigkeitsabtrennung, 09.-10.03.2023, Frankfurt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-37804