Fundamental investigations of actinide immobilization by incorporation into solid phases relevant for final disposal


Fundamental investigations of actinide immobilization by incorporation into solid phases relevant for final disposal

Huittinen, N. M.; Braga Ferreira Dos Santos, L.; Gilson, S.; Hennig, C.; Lender, T.; Marquardt, J.; Murphy, G.; Nießen, J.; Peters, L.; Richter, S.

This contribution provides an overview of a current research network funded by the German Federal Ministry of Education and Research (BMBF), entitled “Fundamental investigations of actinide immobilization by incorporation into solid phases relevant for final disposal” – AcE. The AcE project aims at understanding the incorporation and immobilization of actinides (An) in crystalline, repository-relevant solid phases, such as zirconia (ZrO2) and UO2, but also in zircon (ZrSiO4), pyrochlores (Ln2Zr2O7) and orthophosphates of the monazite type (LnPO4), which may find use as host matrices for the immobilization and safe disposal of high-level waste streams.
Recent studies by the AcE-project consortium, addressing the structure, properties, and the radiation tolerance of monazites and Zr(IV)-based solid phases containing actinides or their surrogates from the lanthanide series will be presented. Material synthesis strategies in the AcE project have aimed at generating single-phase solid solutions in the form of polycrystalline powders, dense ceramics, and single crystals. Structural studies using powder X-ray diffraction at ambient conditions, but also at high temperatures and pressures have been complemented with a wide range of microscopic and spectroscopic techniques to address differences between the host- and dopant environments in the solid matrices at ambient and extreme conditions. The radiation tolerance of the synthetic solid phases have been investigated by combining external heavy-ion irradiation of inactive Ln-doped materials and in situ self-irradiation of 241Am-doped Zr(IV)-phases with monoclinic, cubic defect fluorite and pyrochlore structures. The latter experiments have been conducted in joint efforts with the Joint Research Center in Karlsruhe within the ActUsLab programme.

Involved research facilities

Related publications

  • Poster
    Actinides 2023, 04.-08.06.2023, Golden Colorado, United States

Permalink: https://www.hzdr.de/publications/Publ-37809