Application of dissimilatory iron reduction by a novel Desulfitobacterium sp. isolate for Tc-99 immobilization


Application of dissimilatory iron reduction by a novel Desulfitobacterium sp. isolate for Tc-99 immobilization

Cardaio, I.; Mayordomo, N.; Stumpf, T.; Cherkouk, A.; Müller, K.

Dissimilatory iron reduction is an anaerobic respiratory pathway, wherein ferric (Fe³) reducers couple the oxidation of organic acids, sugars and aromatic hydrocarbons to the reduction of Fe³-species [1]. This may lead to the formation of minerals such as magnetite (Fe²Fe³₂O₄) and siderite (Fe²CO₃) [2], which, in turn, can mediate the reduction of soluble pollutants as pertechnetate (Tc⁷O₄⁻) to insoluble oxides (Tc⁴O₂) [3].
The genus Desulfitobacterium contains obligate anaerobic bacteria that are capable of utilizing a wide range of electron acceptors, including nitrite, sulfite, metals, humic acids and halogenated organic compounds [4].
In this work, the Fe³ reduction of a Desulfitobacterium species was examined. The microorganism has been isolated from bentonite, which is potentially used as geotechnical barrier in deep geological repositories for radioactive waste [5].
The cultivation conditions included DSMZ 579 medium with Na-acetate as electron donor to reduce Fe³ citrate [6]. During cultivation, the formation of white precipitates was observed. The phases were collected both under aerobic and anaerobic conditions and repeatedly investigated by using Raman microscopy and powder X-ray diffraction (pXRD). It was noticed that the phases turned immediately to blue-greenish overnight under oxic conditions. Both Raman spectra and pXRD diffractograms can be attributed to vivianite (Fe²₃(PO₄)₂). Moreover, Raman spectra revealed the possible presence of pyrite (Fe²S₂), siderite, magnetite and hematite (Fe³₂O₃). These results suggest the ability of the bacterium of forming different Fe²-minerals. Notwithstanding, both methods indicate the change of the chemistry of the precipitates according to environmental factors. The Fe²-minerals formation by this microorganism depending on Fe³-compounds and background electrolytes is currently ongoing. The biogenic ferrous minerals will be studied regarding the reduction of Tc⁷O₄⁻.
The authors acknowledge the German Federal Ministry of Education and Research (BMBF) for the financial support of NukSiFutur TecRad young investigator group (02NUK072).

Keywords: microorganisms; iron minerals; technetium; deep geological repositories

  • Lecture (Conference)
    ChemTUgether 2023 & Alumni Meeting 2023, 29.09.2023, TU Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-37814