Synthesis and characterization of lanthanide and actinide doped zirconates


Synthesis and characterization of lanthanide and actinide doped zirconates

Richter, S.; Gilson, S.; Braga Ferreira Dos Santos, L.; Stumpf, T.; Huittinen, N. M.

Zirconium dioxide is a corrosion product of the Zircaloy cladding, which houses the nuclear fuel pellets. It can form solid solutions with uranium as well as fission and activation products. Moreover, ZrO2 and other zirconium bearing crystalline solid phases, such as pyrochlores, are being investigated as potential host matrices for the immobilization of radionuclides present in high-level waste streams. Zirconate pyrochlores are characterized by high chemical durability and radiation resistance. However, upon irradiation, some zirconate pyrochlores undergo a phase transition to the defect fluorite crystal structure, or become amorphous, which could hamper a continued immobilization of radionuclides in the solid matrix. In the current study, the influence of different synthesis methods on the phase purity of Ce/Nd-co-doped zirconates was investigated. Furthermore, phase transformations occurring in zirconate phases as a result of different U/Y-dopant concentrations were studied.
Ce/Nd-co-doped zirconates and U/Y-co-doped zirconates were obtained via coprecipitation. In addition, identical zirconate compositions were synthesized using three different solid-state methods involving manual mixing with a mortar and pestle, mechanical mixing with a ball mill or magnetic mixing in a slurry. PXRD measurements of all solids were done for crystal structure analysis.
For the Ce/Nd-co-doped zirconates synthesized via coprecipitation, rather phase-pure monoclinic, cubic defect fluorite and cubic pyrochlore structures could be obtained. The samples synthesized via solid-state methods were found to contain multiple phases due to insufficient mixing of the educts. Manual mixing led to the most phase-pure ceramics and was therefore chosen for further investigation. It was shown that re-sintering the ceramics as well as longer grinding time resulted in enhanced phase purity. Furthermore, an increase of the Nd-content also correlates with an improved phase purity.
PXRD data of the U-doped zirconates showed a peak-shift towards lower two theta values with increasing U-concentration. At the same dopant concentrations, U/Y-co-doped zirconates showed higher symmetry crystal structures than Ce/Nd-co-doped zirconates. This is caused by the larger ionic radius of U4+ compared to Ce4+ allowing for the stabilization of higher symmetry crystal structures at equal dopant concentrations.

Involved research facilities

Related publications

  • Poster
    NEA Global Forum Rising Stars Workshop in Nuclear Education, Science, Technology and Policy, 21.-22.09.2023, Boston, USA

Permalink: https://www.hzdr.de/publications/Publ-37820