A hadron nucleus collision event generator for simulations of intermediate energies


A hadron nucleus collision event generator for simulations of intermediate energies

Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drueke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjess, H.; Rosendaal, D.; Ross, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intranuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic
and inelastic pion–nucleon and nucleon–nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the D33-resonance which, however, limits the model at higher energies.
To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon–nucleon as well as elastic and charge exchange pion–nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code.

  • Nucl. Instrum. Meth. A491 (2002)424

Permalink: https://www.hzdr.de/publications/Publ-5764