In-situ conformational analysis of fibrinogen adsorbed on Si surfaces


In-situ conformational analysis of fibrinogen adsorbed on Si surfaces

Tunc, S.; Maitz, M. F.; Steiner, G.; Vázquez, L.; Pham, M. T.; Salzer, R.

Fibrinogen is a major plasma protein. Previous investigations of structural changes of fibrinogen due to adsorption are mostly based on indirect evidence after its desorption, whereas our measurements were performed on fibrinogen in its adsorbed state. Specific enzyme linked immunosorption experiments showed that the amount of adsorbed fibrinogen increased as the surface became more hydrophobic. AFM investigations revealed the trinodular shape of fibrinogen molecules adsorbed on hydrophilic surfaces, whereas all of the molecules appeared globular on hydrophobic surfaces. The distribution of secondary structures in adsorbed fibrinogen was quantified by in-situ FTIR analysis. Substrates of identical chemical bulk composition but different surface hydrophobicity permit direct comparison among them. Adsorption properties of fibrinogen are different for each degree of hydrophobicity. Although there is some increase of turn structure and decrease of β-sheet structure, the secondary structure of adsorbed fibrinogen on hydrophilic surface turned out to be rather similar to that of the protein in solution phase with a major α-helix content. Hydrophilic surfaces exhibit superior blood compatibility as required for medical applications.

Keywords: Silizium; Protein; Fibrinogen; Adsorption; Konformation; AFM; FTIR

  • Colloids and Surfaces B: Biointerfaces, 42(2005)3-4, 219-225

Permalink: https://www.hzdr.de/publications/Publ-6569