Anisotropy of Thermal Conductivity and Possible Signature of the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5


Anisotropy of Thermal Conductivity and Possible Signature of the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5

Capan, C.; Bianchi, A.; Movshovich, R.; Christianson, A. D.; Malinowski, A.; Hundley, M. F.; Lacerda, A.; Pagliuso, P. G.; Sarrao, J. L.

We have measured the thermal conductivity of the heavy-fermion superconductor CeCoIn5 in the vicinity of the upper critical field, with the magnetic field perpendicular to the c axis. Thermal conductivity displays a discontinuous jump at the superconducting phase boundary below critical temperature T 0≈1 K, indicating a change from a second- to first-order transition and confirming the recent results of specific heat measurements on CeCoIn5. In addition, the thermal conductivity data as a function of field display a kink at a field Hk below the superconducting critical field, which closely coincides with the recently discovered anomaly in specific heat, tentatively identified with the appearance of the spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state. Our results indicate that the thermal conductivity is enhanced within the FFLO state, and call for further theoretical investigations of the order parameter’s real-space structure (and, in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.

Permalink: https://www.hzdr.de/publications/Publ-7235