Atomistic simulation of defects in Si: migration of di- and tri-interstitials


Atomistic simulation of defects in Si: migration of di- and tri-interstitials

Posselt, M.

The state-of-the-art interpretation of physical processes during post-implantation annealing, such as defect evolution, transient-enhanced dopant diffusion and dopant activation, assumes that ion implantation produces only single vacancies and self-interstitials, and that these are the only mobile intrinsic defects. Theoretical investigations show that both assumptions may be not correct. The talk presents results of comprehensive atomistic simulations on the properties of di- and tri-interstitials. It is focused on the migration of these defects and on the atomic mechanisms of the defect diffusion. The results of the atomistic simulations are compared with experimental data. The fact that the simulations predict a high di-interstitial mobility may lead to a re-interpretation of some experimental results.

Keywords: intrinsic defects; silicon; computer simulation

  • Lecture (others)
    43. Arbeitskreis Punktdefekte, 02.-03.03.2005, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-7247