High-intensity terahertz radiation from a microstructured large-area photoconductor


High-intensity terahertz radiation from a microstructured large-area photoconductor

Dreyhaupt, A.; Winnerl, S.; Dekorsy, T.; Helm, M.

We present a planar large-area photoconducting emitter for impulsive generation of terahertz (THz) radiation. The device consists of an interdigitated electrode metal-semiconductor-metal (MSM) structure which is masked by a second metallization layer isolated from the MSM electrodes. The second layer blocks optical excitation in every second period of the MSM finger structure. Hence charge carriers are excited only in those periods of the MSM structure which exhibit a unidirectional electric field. Constructive interference of the THz emission from accelerated carriers leads to THz electric field amplitudes up to 85 V/cm when excited with fs optical pulses from a Ti:sapphire oscillator with an average power of 100 mW at a bias voltage of 65 V applied to the MSM structure. The proposed device structure has a large potential for large-area high-power THz emitters.

Permalink: https://www.hzdr.de/publications/Publ-7250