Interaction of Actinides with the Predominant Indigenous Bacteria in Äspö Aquifer - Interactions of Selected Actinides U(VI), Cm(III), Np(V) and Pu(VI) with Desulfovibrio äspöensis


Interaction of Actinides with the Predominant Indigenous Bacteria in Äspö Aquifer - Interactions of Selected Actinides U(VI), Cm(III), Np(V) and Pu(VI) with Desulfovibrio äspöensis

Moll, H.; Merroun, M.; Stumpf, T.; Rossberg, A.; Geipel, G.; Selenska-Pobell, S.; Bernhard, G.

Sulfate-reducing bacteria (SRB) frequently occur in the deep granitic rock aquifers at the Äspö Hard Rock Laboratory (Äspö HRL), Sweden. The new SRB strain Desulfovibrio äspöensis could be iso-lated. The objective of this project was to explore the basic interaction mechanisms of uranium, curium, neptunium and plutonium with cells of D. äspöensis DSM 10631T.
The cells of D. äspöensis were successfully cultivated under anaerobic conditions as well in an optimized bicarbonate-buffered mineral medium as on solid medium at 22 °C. To study the interaction of D. äspöensis with the actinides, the cells were grown to the mid-exponential phase (four days). The collected biomass was usually 1.0±0.2 gdry weight/L. The purity of the used bacterial cultures was verified using microscopic techniques and by applying the Amplified Ribosomal DNA Restriction Enzyme Analysis (ARDREA).
The interaction experiments with the actinides showed that the cells are able to remove all four actinides from the surrounding solution. The amount of removed actinide and the interaction mechanism varied among the different actinides.
The main U(VI) removal occurred after the first 24 h. The contact time, pH and [U(VI)]initial influence the U removal efficiency. The presence of uranium caused a damaging of the cell membranes. TEM revealed an accumulation of U inside the bacterial cell. D. äspöensis are able to form U(IV). A complex interaction mechanism takes place consisting of biosorption, bioreduction and bioaccumulation.
Neptunium interacts in a similar way. The experimental findings are indicating a stronger interaction with uranium compared to neptunium.
The results obtained with 242Pu indicate the ability of the cells of D. äspöensis to accumulate and to reduce Pu(VI) from a solution containing Pu(VI) and Pu(IV)-polymers.
In the case of curium at a much lower metal concentration of 3x10-7 M, a pure biosorption of Cm(III) on the cell envelope forming an inner-sphere surface complex most likely with organic phosphate groups was detected.
To summarize, the strength of the interaction of D. äspöensis with the selected actinides at pH 5 and actinide concentrations ≥ 10 mg/L ([Cm] 0.07 mg/L) follows the pattern: Cm > U > Pu >> Np.

Keywords: Uranium; Neptunium; Curium; Plutonium; Bacteria; Desulfovibrio äspöensis; TRLFS; LIPAS; XAS; XANES; EXAFS; TEM/EDX; Microbial Interactions; Surface Complexation; Biosorption; Bioreduction; Bioaccumulation; Microbiology; Cultivation; Liquid-liquid Extraction; Absorptionsspectroscopy

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; FZR-422 2005
    ISSN: 1437-322X
  • Other report
    Dresden: Final Report, BMWA Project No. 02 E9491, 2005
    60 Seiten

Downloads

Permalink: https://www.hzdr.de/publications/Publ-7260