Dipole-strength distributions up to the particle-separation energies and photodissociation of Mo isotopes


Dipole-strength distributions up to the particle-separation energies and photodissociation of Mo isotopes

Schwengner, R.; Benouaret, N.; Beyer, R.; Dönau, F.; Erhard, M.; Frauendorf, S.; Grosse, E.; Junghans, A. R.; Kosev, K.; Klug, J.; Nair, C.; Nankov, N.; Rusev, G.; Schilling, K. D.; Wagner, A.

Dipole-strength distributions in the nuclides 92$Mo, 98Mo and 100Mo have been investigated in photon-scattering experiments at the superconducting electron accelerator ELBE of the Forschungszentrum Rossendorf.
A simulation of gamma cascades was performed in order to estimate the distribution of inelastic transitions to low-lying states and thus to deduce the correct dipole-strength distributions up to the neutron-separation energies. The obtained absorption cross sections connect smoothly to (gamma,n) cross sections and give novel information about the low-energy tail of the Giant Dipole Resonance below the neutron-separation energies. The experimental cross sections are compared with predictions of a Quasiparticle-Random-Phase Approximation in a deformed basis.

Photoactivation experiments were performed at various electron energies to study the 92Mo(gamma,n), 92Mo(gamma,p) and 92Mo(gamma,alpha) reactions. The deduced activation yields are compared with theoretical predictions.

Keywords: Photon scattering; photoabsorption cross section; dipole strength; Random-Phase-Approximation; photoactivation; p-nuclei; reaction yields

  • Contribution to proceedings
    International Conference on Collective Motion in Nuclei under Extreme Conditions, 20.-23.6. 2006, Sankt Goar, Deutschland
  • Nuclear Physics A 788(2007), 331c-336c

Permalink: https://www.hzdr.de/publications/Publ-8623