Fermiology and superconductivity at high magnetic fields in a completely organic cation radical salt


Fermiology and superconductivity at high magnetic fields in a completely organic cation radical salt

Brooks, J. S.; Williams, V.; Choi, E.; Graf, D.; Tokumoto, M.; Uji, S.; Zuo, F.; Wosnitza, J.; Schlueter, J. A.; Davis, H.; Winter, R. W.; Gard, G. L.; Storr, K.

We report specialized interplane magnetoresistance (MR) measurements on the organic superconducting compound β´´-(BEDT-TTF)2SF5CH2 CF2SO3 (where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene) in both the superconducting (Tc ∼ 5K) and normal states versus magnetic field direction. In the normal state, detailed angular-dependent magnetoresistance oscillation (AMRO) studies reveal peculiar features of the Fermi surface topology of this compound, and very high magnetic field studies further support the unusual nature of the electronic structure. In the superconducting state we investigate, through detailedAMRO measurements, the anomalous MR peak that appears within the superconducting field-temperature phase diagram. Our results reveal a direct connection between the superconducting state determined from purely in-plane field, and the vortex lattice produced by the inter-plane magnetic field. We also describe several unique sample rotation instruments used in these high field experiments, including the use of dysprosium pole pieces in combination with a 45 T hybrid magnet to carry out measurements at the highest steady-state resistive magnetic field (47.8 T) yet achieved.

  • Open Access Logo New Journal of Physics 8(2006), 255

Permalink: https://www.hzdr.de/publications/Publ-9153