Magnetic Excitations in S = 1/2 Spin Chains with Alternating g-tensor and the Dzyaloshinskii-Moriya Interaction


Magnetic Excitations in S = 1/2 Spin Chains with Alternating g-tensor and the Dzyaloshinskii-Moriya Interaction

Zvyagin, S. A.; Wosnitza, J.; Kolezhuk, A. K.; Krzystek, J.; Feyerherm, R.

The magnetic excitation spectrum in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic (AFM) chain system with an alternating g-tensor and the Dzyaloshinskii-Moriya interaction, has been studied using electron-spin resonance (ESR) spectroscopy in magnetic fields up to 25 T. Ten modes were resolved in the spectrum. The data were analyzed in terms of the sine-Gordon quantum field theory [Phys. Rev. Lett. 79, 2883 (1997)]; signatures of three breather branches and a soliton were identified. The field-induced gap was measured directly. In addition, a new theoretical concept proposed recently by Oshikawa and Affleck [Phys. Rev. Lett. 82, 5136 (1999)] has been tested. Their theory, based on bosonization and the self-energy formalism, can be applied for the precise calculation of ESR parameters of spin-1/2 AFM chains in the perturbative spinon regime. Excellent quantitative agreement between the theoretical predictions and experiment is obtained.
e-mail: s.zvyagin@fz-rossendorf.de

  • Lecture (Conference)
    Yamada Conference LX on Research in High Magnetic Fields (RHMF), 16.-19.08.2006, Sendai, Japan

Permalink: https://www.hzdr.de/publications/Publ-9201