Synthesis of nanostructures with ion beams


Synthesis of nanostructures with ion beams

Heinig, K.-H.

An extended review will be given on the synthesis and modification of nanostructures using ion beams. The lecture is devided in two parts: The first hour will be used to discuss the impact of ion beam solid interactions on the thermodynamics of phase separation (nucleation, growth, Ostwald ripening, coalescence). It will be shown that the nonequilibrium steady-state under ion irradiation results in reaction pathways of the system which differs considerably from conventional thermodynamics (e.g. inverse Ostwald ripening, nanoparticle shape change, surface structure formation). The second hour will be used to demonstrate the full CMOS compatibility of ion beam processing. The ion beam is a well-controllable tool for selforganization of structures on the nanoscale. As an example, the ion beam synthesis of self-aligned Si nanocrystal layers in the gate oxide of MOS transistors will be discussed. Such layers are applied as discrete charge storage centers in an advanced version of FLASH memories.

Keywords: nanostructures; ion beam synthesis; fundamentals; advanced processing; phase separation; self-organisation; modeling; atomistic simulations

  • Invited lecture (Conferences)
    Nanotechnology Research Forum, 16.-20.10.2006, Ankara, Turkey

Permalink: https://www.hzdr.de/publications/Publ-9295