BNL superconducting RF guns-technology challenges as ERL sources


BNL superconducting RF guns-technology challenges as ERL sources

Burrill, A.; Ben-Zvi, I.; Calaga, R.; Chang, X.; Hahn, H.; Kayran, D.; Kewisch, J.; Litvinenko, V.; Mcintyre, G.; Nicoletti, A.; Pate, D.; Rank, J.; Scaduto, J.; Rao, T.; Wu, K.; Zaltsman, A.; Zhao, Y.; Bluem, H.; Cole, M.; Falletta, M.; Holmes, D.; Peterson, E.; Rathke, J.; Schultheiss, T.; Todd, A.; Wong, R.; Lewellen, J.; Funk, W.; Kneisel, P.; Phillips, L.; Preble, J.; Janssen, D.; Nguyen-Tuong, V.

The design, fabrication and commissioning of a 703.75 MHz SRF photoinjector with a retractable multi-alkali photocathode designed to deliver 0.5A average current at 100% duty factor is the present undertaking of the electron cooling group in the Collider Accelerator Division of Brookhaven National Labs. This photoinjector represents the state of the art in photoinjector technology, orders of magnitude beyond the presently available technology, and should be commissioned by 2007. The R&D effort presently underway, and the focus of this paper, will address the numerous technological challenges that must be met for this project to succeed. These include the novel physics design of the cavity, the challenges of inserting and operating a multi-alkali photocathode in the photoinjector at these high average currents, and the design and installation of a laser system capable of delivering the required 10s of watts of laser power needed to make this photoinjector operational. (c) 2005 Elsevier B.V. All rights reserved.

Keywords: energy recovery linac; high average current; superconducting RF; photoinjector design; ampere class; photocathode

Permalink: https://www.hzdr.de/publications/Publ-9387