Strategies for Contacting Single Molecule Devices


Strategies for Contacting Single Molecule Devices

Wieser, M.; Sendler, T.; Kilibarda, F.; Teshome, B.; Keller, A.; Grebing, J.; Erbe, A.

Abstract

Single molecules have been under investigation in terms of their suitability as building blocks for future electronics for more than a decade now. But the ultimate goal of molecular electronics is the (controlled) creation of functional electric circuits, i.e., networks, rather than individual devices. This requires two aspects to be addressed: The properties of the devices themselves and the properties of the contacts between individual devices as well as to the molecules forming the devices.

Traditionally, top-down methods are used to form these contacts. Here, results of measurements on PEEB (P-Ethoxy Ethyl Benzoate) molecules using the technique of mechanically controllable break junctions will be presented.

However, a bottom-up approach is favorable because of the reduced effort in fabrication. Therefore, in the second part an intermediate, hybrid approach using DNA double helix bundles as templates for leads and top-down fabricated contacts to establish a connection to the macroscopic world will be discussed.

Keywords: Molecular Electronics; Electronic Transport; Mesoscopic Physics; DNA

  • Invited lecture (Conferences)
    IHRS NANONET Annual Workshop 2013, 10.10.2013, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19625