Stabilite des systemes non conservatifs et algebra lineaire


Stabilite des systemes non conservatifs et algebra lineaire

Lerbet, J.; Aldowaji, M.; Challamel, N.; Kirillov, O.; Nicot, F.; Darve, F.

Abstract

Investigations about linear stability of nonconservative systems with non symmetric stiness matrices lead to linear algebra results that are unusual in mechanics. It may also lead to original linear algebra developments. It is illustrated about linear divergence stability when adding kinematic constraints on the nonconservative system. The original concept of m-positive definite matrices is proposed, the main result is given and some mathematical open problems are suggested.

Keywords: nonconservative systems; kinematic constraints

  • Open Access Logo Contribution to proceedings
    21eme Congres Francais de Mecanique, 26.-30.08.2013, Bordeaux, France
    Congrès Francais de Mécanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France: AFM, Maison de la Mécanique

Permalink: https://www.hzdr.de/publications/Publ-19662