Lattice and orbital fluctuations in TiPO4

Lattice and orbital fluctuations in TiPO4

Wulferding, D.; Möller, A.; Choi, K.-Y.; Pashkevich, Y. G.; Babkin, R. Y.; Lamonova, K. V.; Lemmens, P.; Law, J. M.; Kremer, R. K.; Glaum, R.


In the s = 1/2 antiferromagnetic spin chain material TiPO4, the formation of a spin gap takes place in a two-step process with two characteristic temperatures, T = 111 K and T SP = 74 K. We observe an unusual lattice dynamics over a large temperature regime as well as evidence for an orbital instability preceding the spin-Peierls transition. We relate different intrachain exchange interactions of the high temperature compared to the spin-Peierls phase to a modification of the orbital ordering pattern. In particular, our observation of a high-energy excitation of mixed electronic and lattice origin suggests an exotic dimerization process different from other spin-Peierls materials.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)