Ultra-sensitive γ-ray spectroscopy set-up for investigating primordial lithium problem

Ultra-sensitive γ-ray spectroscopy set-up for investigating primordial lithium problem

Gervino, G.; Gustavino, C.; Trezzi, D.; Aliotta, M.; Anders, M.; Boeltzig, A.; Bemmerer, D.; Best, A.; Broggini, C.; Bruno, C.; Caciolli, A.; Cavanna, F.; Corvisiero, P.; Davinson, T.; Depalo, R.; Dileva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Z.; Guglielmetti, A.; Gyürky, G.; Imbriani, G.; Junker, M.; Menegazzo, R.; Prati, P.; Scott, D. A.; Straniero, O.; Szücs, T.


To precisely determine BBN 6Li production, the cross-section of the nuclear reaction 2H(α, γ)6Li must be directly measured within the astrophysical energy range of 30–400 keV. This measure requires an ultra- low γ-ray background in the experimental set-up. We have realized the conditions matching these very strict requirements at LUNA, the deep underground accelerator laboratory active in the INFN Gran Sasso National Laboratory (LNGS), Italy: the γ-ray spectrometer background has been reduced down to reach unmatched low levels, comparable to the good ones experienced in dedicated off-line underground ultra low γ counting rate. We present and discuss the γ-ray background reduction reached in the HpGe spectrometer, where most of the remaining γ-ray background seen in the spectra are coming from the energetic deuterons scattered in the gas target by the α beam. Thanks to the low neutron environmental background at LUNA, the effect of this weak flux of 2–3 MeV neutrons on HpGe detectors has been studied in details and the results are presented and discussed.

Keywords: Gamma spectroscopy Underground Physics Lithium problem

Permalink: https://www.hzdr.de/publications/Publ-23743