Spin-wave frequency combs


Spin-wave frequency combs

Hula, T.; Schultheiß, K.; Trindade Goncalves, F. J.; Körber, L.; Bejarano, M.; Copus, M.; Flacke, L.; Liensberger, L.; Buzdakov, A.; Kakay, A.; Weiler, M.; Camley, R.; Faßbender, J.; Schultheiß, H.

We experimentally demonstrate the generation of spin-wave frequency combs based on the non-
linear interaction of propagating spin waves in a microstructured waveguide. By means of time- and space-resolved Brillouin light scattering spectroscopy, we show that the simultaneous excita- tion of spin waves with different frequencies leads to a cascade of four-magnon scattering events which ultimately results in well-defined frequency combs. Their spectral weight can be tuned by the choice of amplitude and frequency of the input signals. Furthermore, we introduce a model for stimulated four-magnon scattering which describes the formation of spin-wave frequency combs in the frequency and time domain.
Frequency

Keywords: magnetism; magnetization dynamics; spin waves; magnons; spin dynamics; micromagnetic modeling; Brillouin light scattering; spectroscopy

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-32565
Publ.-Id: 32565