Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients


Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients

Starke, S.; Zwanenburg, A.; Leger, K.; Lohaus, F.; Linge, A.; Schreiber, A.; Kalinauskaite, G.; Tinhofer, I.; Guberina, N.; Guberina, M.; Balermpas, P.; von der Grün, J.; Ganswindt, U.; Belka, C.; Peeken, J. C.; Combs, S. E.; Böke, S.; Zips, D.; Richter, C.; Troost, E. G. C.; Krause, M.; Baumann, M.; Löck, S.

This dataset contains the model checkpoints, predictions and performance metrics for the multitask neural networks presented in the corresponding manuscript.

Keywords: survival analysis; vision transformer; convolutional neural network; multitask learning; tumor segmentation; head and neck cancer; Cox proportional hazards; loco-regional control; progression-free survival; discrete-time survival models

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-37408
Publ.-Id: 37408