Predicting the electronic structure of matter at scale with machine learning

Predicting the electronic structure of matter at scale with machine learning

Cangi, A.


In this talk, I will present our recent advancements in utilizing machine learning to significantly enhance the efficiency of electronic structure calculations [1]. In particular, I will focus on our efforts to accelerate Kohn-Sham density functional theory calculations by incorporating deep neural networks within the Materials Learning Algorithms framework [2,3]. Our results demonstrate substantial gains in calculation speed for metals across their melting point. Furthermore, our implementation of automated machine learning has resulted in significant savings in computational resources when identifying optimal neural network architectures, thereby laying the foundation for large-scale investigations [4]. I will also showcase our most recent breakthrough, which enables neural-network-driven electronic structure calculations for systems containing over 100,000 atoms [5].

[1] L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Phys. Rev. Materials, 6, 040301 (2022)
[2] A. Cangi, J. A. Ellis, L. Fiedler, D. Kotik, N. A. Modine, V. Oles, G. A. Popoola, S. Rajamanickam, S. Schmerler, J. A. Stephens, A. P. Thompson, Phys. Rev. B 104, 035120 (2021). [3] J. Ellis, L. Fiedler, G. Popoola, N. Modine, J. Stephens, A. Thompson, A. Cangi, S. Rajamanickam, Phys. Rev. B, 104, 035120 (2021)
[4] L. Fiedler, N. Hoffmann, P. Mohammed, G. Popoola, T. Yovell, V. Oles, J. Austin Ellis, S. Rajamanickam, A. Cangi, Mach. Learn.: Sci. Technol., 3, 045008 (2022)
[5] L. Fiedler, N. Modine, S. Schmerler, D. Vogel, G. Popoola, A. Thompson, S. Rajamanickam, A. Cangi, npj. Comput. Mater., 9, 115 (2023)

Keywords: Electronic structure theory; Density functional theory; Artificial intelligence; Machine learning; Neural networks; Materials science

  • Invited lecture (Conferences)
    APS March Meeting 2024, 04.-08.03.2024, Minneapolis, United States