Magnetic quantum oscillations in strongly correlated metals


Magnetic quantum oscillations in strongly correlated metals

Wosnitza, J.

One of the most powerful methods to determine important bulk band-structure parameters in metals is the measurement of magnetic quantum oscillations. By applying high magnetic fields, this can be done e.g. by detecting the oscillations in the field-dependent magnetization, called de Haas-van Alphen (dHvA) effect, or by resolving Shubnikov-de Haas (SdH) oscilla-tions in the field-dependent resistivity. The combination of such kind of experimental data with sophisticated band-structure calculations often is a necessary prerequisite to gain a deeper understanding of the electronic properties of metals. One example for such a joint ef-fort of experimental and theoretical work is the finding and explanation of the field-induced band-structure change in CeBiPt [1]. In this material, a drastic change of the electronic band structure, as seen in the SdH and Hall signals, is found above about 25 T. This field-induced Lifshitz transition can be understood by the splitting of the Ce-5d bands close to the Fermi energy due to the exchange interaction with the polarized Ce-4f states. Another example where dHvA measurements were successfully combined with highly precise full-potential local-orbital calculations is the borocarbide superconductor LuNi2B2C [2]. By carefully com-paring the experimentally extracted effective masses with the calculated bare masses the many-body mass enhancements could be determined independently for several bands and for different directions.

  • Invited lecture (Conferences)
    2nd Bilateral Estonian-German Workshop Strong Nonlinear Vibronic and Electronic Interactions in Solids, 21.-23.05.2009, Cottbus, Deutschland
  • Invited lecture (Conferences)
    10th German-Japanese Symposium "New Quantum States and Phenomena in Condensed Matter", 13.-16.09.2010, Hiroshima, Japan

Permalink: https://www.hzdr.de/publications/Publ-12942