Evaluation of the novel radiotracer 18F-DBT-10 for imaging the α7 nicotinic acetylcholine receptor in non-human primates


Evaluation of the novel radiotracer 18F-DBT-10 for imaging the α7 nicotinic acetylcholine receptor in non-human primates

Zheng, M.-Q.; Hillmer, A.; Scheunemann, M.; Holden, D.; Li, S.; Lin, S.; Labaree, D.; Deuther-Conrad, W.; Teodoro, R.; Carson, R. E.; Brust, P.; Huang, H.

Objectives: The α7nAChR is involved in cognition and a potential drug target for treatment of Alzheimer’s disease and schizophrenia. 18F-DBT-10 is a candidate radioligand for α7nAChR imaging (Kranz et al. J Nucl Med 2014; 55 (Suppl. 1):1143). We performed PET experiments in rhesus monkeys to assess its kinetic and imaging characteristics.

Methods: 18F-DBT-10 was prepared from its nitrophenyl precursor by nucleophilic substitution. The affinity of DBT-10 on human nAChRs was determined by radioligand binding studies. Dynamic PET imaging of two monkeys (each control and blockade) was performed using a Focus-220 scanner. Brain and plasma metabolites were analysed by HPLC. Regional volumes of distribution (VT) were estimated from brain and plasma time-activity data.

Results: DBT-10 has high binding affinity to α7nAChR (Ki = 0.60 nM) and excellent selectivity over other nicotinic receptor subtypes. 18F-DBT-10 was prepared in 14.5±4.6% radiochemical yield and >99% radiochemical purity (n=5). Free plasma fraction of 18F-DBT-10 was 18±2 % (n=4). Plasma metabolism varied considerable between the two animals. Brain uptake was high and tissue kinetics fairly fast, with peak uptake at 10-50 min (Figure 1). No radioactive metabolites were found in brain tissue (thalamus, frontal cortex, hippocampus, and cerebellum) taken from one monkey at 120 min p.i. Time-activity curves were fitted well with the 2-tissue kinetic model. Mean VT values were 58.0, 57.5, 54.9, 54.5, 52.0, 48.4, 39.9, and 34.8 cm3/mL, respectively, for the thalamus, insular, frontal and cingulate cortices, striatum, temporal cortex, hippocampus, occipital cortex, and cerebellum (n=2). Pre-treatment with the selective α7 ligand ASEM (0.69 & 1.24 mg/kg) dose-dependently reduced binding of 18F-DBT-10 in all regions by 30% and 64%, respectively.

Conclusions: 18F-DBT-10 is a novel PET radiotracer with high affinity and selectivity for the α7nAChR. In rhesus monkeys it displays high uptake, appropriate kinetics and high specific binding in brain and thus is a promising agent for PET imaging of α7nAChR in humans.


Figure 1. MR and PET VT images (left) and tissue TACs (right) from a baseline scan with 18F-DBT-10.

This version: 2686 characters (previous version: 2831)

  • Poster
    ISRS2015, 26.-31.05.2015, Columbia, Missouri, USA
  • Open Access Logo Abstract in refereed journal
    Journal of Labelled Compounds and Radiopharmaceuticals 58(2015)1, 226-226
    DOI: 10.1002/jlcr.3302_2
    ISSN: 1099-1344

Permalink: https://www.hzdr.de/publications/Publ-21996